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The effects of damping on cycling procedures intended to produce self-consistent results among 
coupled equations are investigated. Analytic procedures reveal that Hartree damping will effect the 
rate and mode of convergence without influencing the converged result for general series of poly- 
nomials. Other procedures may not meet the latter critical requirement. Choice of damping factor is 
analyzed and the relevance of geometric series extrapolation techniques to the convergence properties, 
with and without damping, of coupled polynomial series is examined. 

D~impfungseffekte bei zyklischen Prozeduren, die angewendet werden, um yon gekoppelten 
Gleichungen selbstkonsistente Resultate zu gewinnen, werden untersucht. Analytische Prozeduren 
offenbaren, dab die Hartree-Diimpfung auf die SchneUigkeit und die Art der Konvergenz wirkt, ohne 
bei allgemeinen Reihen aus Polynomen das konvergente Resultat dabei zu beeinflussen. Andere 
Prozeduren brauchen letztere kritische Forderung nicht zu erfiillen. Die Wahl des D~impfungsfaktors 
wird analysiert und die Bedeutung der Extrapolationstechniken geometrischer Reihen f'tir die Kon- 
vergenzeigenschaften von gekoppelten Reihen von Polynomen, mit und ohne D~impfung, wird iiber- 
prtift. 

Etude des effets d'amortissement dans les proc6d6s it6ratifs utilis6s pour obtenir des r6sultats self- 
consistants pour des 6quations coupl6es. Des proc6dbs analytiques montrent que l'amortissement de 
Hartree effectera la vitesse et le mode de convergence sans pour autant changer le r6sultat pour des 
s6ries g6n6rales de polyn6mes. D'autres proc6d6s peuvent ne pas remplir cette condition critique. Le 
choix du facteur d'amortissement est analys6 et l'on 6tudie le r61e des techniques d'extrapolation des 
s6ries g6om6triques dans les propri6t6s de convergence, avec et sans amortissement, pour les s~ries 
polynomiales coupl6es. 

Introduction 

A widely used c o m p u t a t i o n a l  a p p r o a c h  to solve physical  system behav iou r  
charac te r ized  by  non- l inea r  pa r ame t r i c  equa t ions  involves cycling a m o n g  these 
equa t ions  unt i l  the  p a r a m e t e r  and  the result  sets they p roduc e  are  consis tent  wi th  
each o ther  and  with wha tever  bounds  are k n o w n  for the p h e n o m e n o n  they 
represent .  The  S C F  p r o c e d u r e  as deve loped  for the H a r t r e e - F o c k - t y p e  mat r ix  
eigenvalue p r o b l e m  [-1] represents  a wel l -def ined and  famil iar  app l i ca t ion  of  
this a p p r o a c h  in theore t ica l  chemistry.  Semi-empir ica l  me thods  in q u a n t u m  
chemis t ry  have also involved  the technique.  Self-consistency requi rements  a m o n g  
d iagona l  ma t r ix  e lement  pa r ame te r s  (c~'s) and  the r~-electron charge  densit ies  
(q's) was in t roduced  as an empi r i c i sm some t ime ago to improve  Htickel  calcula-  
tions, especial ly for ionic  species [2]. Subsequent  and  usual ly  more  firmly g r o u n d e d  
app l i ca t ions  have been m a d e  in re-electron theory  [-3, 4], crysta l  field theory  
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calculations [53, and more recently in the all-electron extended-Hiickel [63 and 
Pople SCF methods [7]. 

In all of the applications mentioned, and those of a physically unrelated nature 
as well, there is a possibility and in some cases a likelihood that parameter adjust- 
ment between cycles strictly conforming to the determining equations will produce 
unsatisfactory results. Divergences of an absolute or oscillatory nature may be 
encountered which lead to no useful result at all. Very slow convergence which 
yields results only at great computational cost must be judged almost as un- 
satisfactory. Both may be avoided in some cases by scaling down or damping 
the cycling corrections with the alternative aims of preventing the overshoot 
which might lead to an instability (and thence to a divergent condition for the 
series characterizing a system variable), or hastening an otherwise stable but 
slowly convergent series. A necessary condition which of course must be satisfied 
by the damping method is that it does not substantially alter the position while 
improving the mode of convergence. This is not a matter of such serious concern 
in "exact calculations" where bounds such as are provided by the variational 
principle may be recognized. It is with this question of forms of damping and their 
effects on mode and position of convergence for some typical cases of self-con- 
sistency cycling in semi-empirical MO calculations where no such external 
bounds exist that the present work deals. How geometric series extrapolation 
techniques simulate the behaviour of converging series and how they may resolve 
the problems encountered in series which diverge upon cycling are also examined. 

Coupled Equation Systems 

The set of input parameters, or variables explicitly dependent upon such 
parameters (designated as ~'s), determine in the cases of present interest a set of 
dependent variables (q's) through matrix (secular) equations 

q ( 1 ) - r  t,,,(o) ~(o) ~z(,o)) (1) 
# - - d / l t ~ l  , ~ ' 2  , " ' ' ,  

In turn, relations are derived in a manner consistent with the empiricism employed 
for the secular equation variables as functions of the output q-values 

- -  I i~,t,/1 , t t 2  . . . . .  / " /m  , -  (2) 

Superscripts in Eqso (1) and (2) denote cycle numbers. Repetition of the process 
is continued until the values of q obtained in a given cycle are consistent with the 
values of e they determine and are determined by, or, in practice by testing values 
of q which do not change by more than a prespecified amount from the q-results 
obtained in the previous cycle. 

With the understanding that, in the absence of cross-terms in the independent 
variables, Eqs. (1) and (2) may be recast, viz., 

q~) = f lu (~(1 t -1)) + f2,. (0~(~ -1)) -t- "'" + fnu ((Z(~t- 1)) (3) 

c~! t) = Fli(q(1 t)) + F2i(q(~ )) + ' "  + Fm,(q~)), (4) 

and that the sums of terms over the functions f and F introduce no additional 
complications over those encountered where dependence on the single variables, 
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~1 = a and ql = q, is assumed, the following analysis may be made. Cross-terms 
in the independent variables, normally present in physical systems of more than 
the simplest or most highly symmetrical nature [8] may in approximation be 
replaced when cycling changes are small by first-order derivative expansions. 

1. L i n e a r  P a r a m e t r i c  E q u a t i o n s  

In the simplest cases where both dependent cycling variables are linear 
functions of the independent variables, i.e., c~ = O)q + a, q = Sc~ + b, it is apparent 
that 

A~ - c~t - e t - 1  = c~ Aqt  , 

Aqt+:  = qt+l  - -  qt = S o ) A q t ,  (5) 
and, therefore, 

A qt +1 = (So)) tAql  �9 (6) 

Note, cycle number is now represented by subscript to simplify notation. Since, 

qt = ~ Aqj  + qo , 
j=l 

t 
qt+l = A ql  ~ (So))i + q o  (7) 

j = 0  

= Aqx ( S o ) -  1 + q o .  

In the limit where t ~ oo and [Sol < 1, 
b + S a  

q o ~ - q o  = A q : / ( 1 - S o ) )  = - -  q o ,  
1 - So) (8) 

- ~o = o)Aql / (1  - So) ) .  

The cycling scheme here generates a geometric series; in the event the absolute 
value of So) is equal to unity oscillatory behaviour is noted, and if greater than 
unity the series diverges. Assumption of convergent geometric series behaviour, it 
is useful to note, is often made for complex cycling relations as an extrapolation 
technique to has.ten slow convergence. The results of three cycles are employed to 
generate "extrapolated" values for the variables of interest, which are then them- 
selves resubmitted to the cycling procedure for further efforts toward reaching 
convergence. If necessary, the extrapolation procedure is reemployed after the 
results of several conventional cycles are obtained, constituting a second, approxi- 
mate cycling - within - a cycling procedure [9]. See further discussions below on 
correspondence to extrapolation procedures. 

To return to the cases of immediate interest, for ISo)l ~ 1, damping procedures 
which retard divergence or hasten convergence are desirable. A method suggested 
by Hartree [-10] where input for cycle t + 1 (the e value as usually construed) is 
constructed as, 

(Input)t + D [(Output)t +: - (Input)t] 

is relevant and may be shown to have the following interesting properties. In the 
present notation, the equation sequence which pertains is, 

Aqt+l = S A l t ,  



D a m p i n g  in Self-Consis tency Cycl ing  Procedures  139 

as before, and, 

~1 = ~o + D(a + o)ql - (a + o)qo)) = C~o + Do) A ql , 

a 2 = cq + D(a + o)q2 - -  (a + o)qo + De) Aql)) 

= ~1 + D(o)(q2 - qo) - Do) Aql) (9) 

=r I + Do)(Aq2 + ( l - D )  Aql) ,  

~3 = ~ + DO)(A q3 + (1 - D) A q2 + (1 - D(2 - D)) A ql) 

t - 1  

e~=a,-1 +De) ~ (1-D)2Aqt_2, 
j=o (10) 

t - 1  

Aqt+l =DSO) ~ (1 -D)JAq t  j .  
j = 0  

Since the recurrence relation, 

Aqt+l = ( 1 - D + S D o ) ) A q t ,  t>  1, 

A q2 = SDo) A ql 

(11) 

may be shown to hold, reduction to the first cycle difference and expansion of A qt 
as in Eq. (7) results in, 

Aqt + l = SDO)(1 - D + S D O ) )  t - 1  Aql , 
t - - 2  

q t - q o = A q l  + SDo) Aql ~ (1 -D+SDO)}  i. 
j = 0  

(12) 

(13) 

Geometric series summation leads to, 

S D O ) [ ( I _ D + S D O ) ) t _ I _ 1 ] }  
q t - q o = A q l  1+ (i  = D TSD@m) Z i - 

In the limit t ~ ,  for ]1 -D+SDO)[  < 1, 

{ D } A q t _  S a + b  
q ~ ~ 1 7 6  D - S D O )  = 1 - S o )  1 - S o )  

(14) 

qo (15) 

which is identical to the result which would have been obtained without damping. 
This is a necessary outcome if the results obtained with damping are to be consider- 
ed trustworthy. The parameter limits within which cycling convergence is guaran- 
teed are now extended. For So) negative, as it usually would be in semi-empirical 
quantum chemical applications, 0 < D  < 2 / (1 -  So)) will guarantee convergence 
in the cycling procedure. Interestingly, if D is greater than (1 -So))  -1, oscillatory 
progress toward convergence would be observed, if less than this quantity, mono- 
tonic asymptotic behaviour would be noted. The maximum rate of convergence 
is obtained when D is equal to this fraction as combination of Eqs. (14) and (15) 
to obtain ( q ~ -  qt) reveals. The cycle 2 results yields q2 equal to q~. This agrees 
10 Theoret. chim. Acta (Berl.) VoL 14 
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with intuition as regards to the behaviour expected on cross-over between oscilla- 
tory and monotonic progressions. 

For Se) between zero and - 1, damping is of course not necessary but could 
aid in the rate of convergence. For So) positive but less than unity, damping is not 
required and as a matter of fact could only be helpful by being an amplification 
factor (D > 1). For Se)-values greater than unity, only a negative and thereby 
physically unrealistic value of D could prevent divergence upon cycling. 

Other damping procedures may be devised. One which appears superficially 
attractive recognizes the change (per cycle) in the variable q and scales down the 
change in e in the following simple proportional fashion to A q, 

Aq,+t  = S Aet  

c~t+ 1 = 0~ t + Do  A q,+t (16) 

This procedure may quickly be shown capable of producing a convergent result 
which however is dependent upon D. In fact, transforming De) of Eq. (16) to e) 
of Eqs. (5) and following the development through Eq. (8) results in, 

q~o - qo = A ql/(1 - DSe)) (17) 

convergent for [DSe)I< 1. Therefore while the convergence properties may 
be improved by damping, the converged and as well as all intermediate results 
are unreliable because of their D-dependence. Damping, it should be recognized, 
will always affect intermediate cycle results, even when disappearing in the con- 
vergent results (cf., Eqs. (9-15)). Attempting to attach any physical reality to inter- 
mediate results forthcoming from a cycling procedure would as a result seem 
futile. 

It is pertinent at this point to recognize the self-consistency procedures which 
make use of paths of descent (e.g., path of steepest descent) are also damping 
procedures, although not as obvious in application. As often employed [11], 
the initial estimate of the eigenvectors obtained from the descent method is used 
to adjust the Hamiltonian matrix, thereby condensing the cycling to a single 
from a two stage operation. This method falls beyond the scope of the present 
analysis; we are here concerned with the stage of Hamiltonian adjustment under 
the assumption that the eigenvectors are immediately available, either from an 
analytic polynomial in the model calculations, or otherwise from conventional 
diagonalization techniques. 

2. Coupling in a Quadratic Equation Sys tem 

Recently adopted variations of extended Htickel theory invoking diagonal 
matrix element adjustment and self-consistency cycling have assumed quadratic 
parametric dependences (on q, for the valence state ionization potentials which 
are equated to the s-values [6, 12]). If linear dependence of q upon ~ in the single 
variable approximation is again employed as the convenient, potentially analyzable 
system for examination, and the Hartree damping procedure adopted, the 
following analysis may be made. 
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Aqt+ l = S Ao~t , 
~1 = % + D [a + ~oql + o)' q~ - (a + coqo + ~ q2o)] 

= %  + D(co Aql +co'Q1 Aql),  

e2=c~.l + D { ~  + Aq2]+m.. ' [ (Q2-DQa)Aq l  +QEAq2]} (18) 

t - 1  

e t = a t _ l + D  co ~ ( I -D)JAq t_ j  
j=O 

+co' Z Qt+ ( - O )  t - k - 1  
Lj=o t=l k=O ~ j _ k _  1 Qk+t- j  A q t - j  �9 

Here Qt = qt + qo and the coefficient of Q inside the k-sum is the binomial coeffi- 
cient. Exchange of the order of summation (k and 1 indices) and recognition of 
known sums over binomial series [13] yields for the general case, 

t ) } o~t=o~t_a +D o) ~, (1 -D)JAq t_ j+e f  Q t - D  ~ Qk+t-j(1--D) j-k-1 Aqt-j . 
k j = o  j k=O 

(19) 

The recurrence relationship between the successive cycle results for A q which 
may be obtained from the first and iast of Eqs. (18) similar to Eq. (11), is, 

A qt+1 = (1 - D + SD[co + co' Qt]) A qt 

A q2 = SD(o3 + o9' Q1) A ql �9 

t > 1, (20) 

Despite what appears to be a much more complicated dependence for the inter- 
mediate and converged values ofqt, it may be shown most conveniently by summa- 
tion over the first of Eq. (20) that in the limit, 

d ql Sa + b 
q ~ 1 7 6  1 -S[co+co ' (q~+qo)]  = 1-S[co+co'qoo] - q 0 ,  (21) 

which are analogous equations in form, at least as far as the lack of D dependence 
goes, to those obtained in the previous case. Solution to obtain the converged 
value of q is of course most expeditiously accomplished through the quadratic 

which may be generated from Eq. (21). For small co' i.e., Io'1 ~ 4-S~a+b) ' 

,~ ( Sco'(Sa + b) ) (Sa+b)  1+ (22) 
q ~ =  1 - S o )  O : ~ m )  f " 

This expansion reveals o '  will cause an essentially linear perturbation on the 
converged value of q under the particular circumstances that So) is positive and 
small (smaller than 2) and S(Sa + b) is not appreciably smaller in magnitude than 
unity. Semi-empirical quantum chemical applications should however usually 
require the original unexpanded quadratic form arising from Eq. (21). 
10" 
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The convergence properties of the cycling system are usefully examined at this 
point and compared to those obtained for the linear system. Eq. (20) reveals that 
for absolute convergence of the series in q, after the first term, 

I1 - O + SD [co + co'Qt] I < 1 (23) 

and hence that for D positive, for convergence, 

2 
D < 1 - S [co + co' Qt] ' (24) 

The co' term will then be the cause of whatever convergence property differences 
may exist from those outlined in detail above for the linear systems. For the systems 
which will require damping, i.e., where (Sco + Sco' Qt) less than -1 ,  convergence 
can only be guaranteed if the appropriate extremum value of Qt which would be 
encountered in the cycling process is employed in Eq. (24). That is, the maximum 
absolute value of Qt where Sco' Qt is positive, or the minimum absolute Qt if 
Sco'Qt is negative will be required. If D is constrained to be smaller than 
(1-S[co+co'Qt]) -1, monotonic convergence is guaranteed and the choice of 
the extremum Q~ value is thereby restricted to those generated from the second 
cycle (q2) or the converged value (q~). 

In practice, the latter is of course not available; q2 or a value larger or smaller 
by a small increment than q3, depending upon the direction dictated by the first 
three damped cycles, could be used as a first estimate for determining D in a process 
of trial and error. The trial and error process for this estimation resembles that 
which would be required for obtaining q~ from Eq. (21). The rate at which the 
cycling procedure could produce a converged value makes the choice of D in 
systems which approximate those chosen here for closed form analysis a matter 
of practical as well as pedagogic concern. 

In a manner similar to the analysis of the dependence of rate of convergence 
on D in the linear cases considered, it may be concluded that maximum convergence 
will occur for D equal to (1 - S[co + co'Q~]). At this value there will be crossover 
in mode of progression (between oscillatory and monotonic), and, again, q2 
will be equal to qoo, with all Aq,, for t>2 ,  equal to zero. 

3. Higher Order Equation Systems 

The analytic procedure followed in the preceding coupled equation systems 
apparently is capable of extension to higher order sets, however, not without 
considerable and algebraically involved efforts. Rather than attempting to obtain 
generalized solutions in this manner, a digital computer program was constructed 
to test polynomials up to order 6 for both equations. A variety of polynomial 
coefficient combinations were tested. From the results obtained it was ascertained 
that the Hartree damping procedure generally has no effect on the converged 
results, independent of the orders of the polynomials, while influencing the rate 
of convergence and the ability to converge upon cycling. Table 1 records a typical 
set of results for linear, quadratic and cubic equation combinations as obtained 
directly from the computer. 
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These results tend to bear out the earlier conclusions concerning the effect 
of D on the rate of convergence. Cases which are divergent upon cycling without 
damping (D = 1.0) are often made to converge with D not very different from unity 
and, in the cited polynomials at least, can always be made to converge with some- 
what stronger damping. Further, convergence is always found to be hastened 

Table 1. Convergence properties for coupled polynomial equations" 

qb, d 

~ S = - 0.2 S' = 0.005 S" = - 0.0002 

co = 5.0 0.1500000 0.3252907 0.3701462 
d, 35,13,1"2 d,257,24,7 d,d,32,8 

co' = - 3.0 0.1574358 0.3747873 0.4428755 
81,23,9,15 70, 21,9,16 61,18, 8,16 

co" = 2.0 0.1565880 0.3599824 0.416580 
99,24,10,14 d,39,13,12 d,56,16,10 

~ Entries are within each block the converged value of q, verified to be independent of D, and the 
number of iterations required for convergence to ]qt - qt-11 < 10- 7 qt with D values of 1.0, 0.8, 0.6 and 
0.4. The polynomials of higher order contain the lower order terms which precede them in the particular 
column and row. Note, a bar over the iteration number indicates monotonic progress toward con- 
vergence, over the early part of the series at least, and d indicates divergence. 

b The constant coefficient b is - 1.7. 
c The constant coefficient a is - 10.0. 
d The S-primed values are the coefficients for the higher order (than linear) terms in the dependence 

of q upon c~. 

by damping, suggesting all the polynomial combinations examined behave in a 
similar manner to the linear- and quadratic-a polynomials with linear-q cases 
discussed in detail previously. 

In fact, from examination of these and similar results in combination with the 
analytic details obtained above, it appeared that the general expression for 
converged q for polynomials of any order in q and ~ should be, 

b + a ( q ~  

q~=  \ ~ / (25) 

\ c%o I \  qo~ I 

This equality, which may be easily verified by multiplying the quotient out and 
expanding the product terms, quickly yields the polynomial in q~ when substitu- 
tion for e~o in terms of q~o is made, and hence, upon solution of the resultant poly- 
nomial equation, yields the desired value of q~. By analogous reasoning to that 
employed above, it is easily ascertained that for the cases examined in Table 1 
the improvement in the rate of convergence with D values somewhat less than unity 
occurs because 

\ ~| / \  qo~ / /  
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will always be roughly around 1/2. The leading and most important terms (1 - So))-1 
yield a crossover point for mode of progression and consequently the most potent 
choice of D, as regards convergence rate, at precisely 1/2. 

Other interesting analysis is possible; e.g., on how a series which begins to 
converge monotonically can change its mode to oscillatory as cycling continues 
(see the effects of Qt, for example in the quadratic case discussed in detail above). 
The most important implication of the general results appears however to concern 
the general efficacy of the Hartree procedure. It would appear from the results 
obtained that Hartree damping will always produce cycling results if convergent 
which are independent of the damping factor employed, at least in cases of pairs 
of single variables (one a dependent on one q and vice versa). The functional de- 
pendence will not matter since most functions of general interest may be expanded 
in terms of an appropriate convergent polynomial series for which the present 
analysis pertains. 

Relevance to Extrapolation Procedures 

As implied above, an extrapolation procedure which employs the results of 
three successive cycles and assumes a geometric series relationship among them 
[14] will approximate the remainder of the progression to which it is applied 
exactly as that of a coupled bilinear system. Since geometric series extrapolation 
procedures are often used, the implications of this fact are usefully pursued. To 
the extent which coupled higher order polynomials resemble the bilinear system 
in mode of convergence, extrapolation may be expected to hasten convergence 
rate. Moreover, even in apparently divergent cases, reverse or back-extrapolation, 
similar in form to the normal procedure and entirely justifiable within the geometric 
series approximation, can often provide a new and effective base point from whence 
continued iteration can lead to a convergent self-consistent set of results. 

From Eq. (20) for the quadratic (~ equation) case, it is apparent that the error 
accompanying extrapolation will depend directly upon the SD~o'Qt term: if 
Qt is relatively constant, or the entire term is relatively small, geometric series 
extrapolation can be expected to yield a satisfactory estimate of the converged 
value ofq. ]=or the cycled system which converges, the further along the extrapola- 
tion procedure is applied, the closer the extrapolated value should be to the con- 
verged value. Of course, on the other hand, the earlier the extrapolation is used, 
the greater the potential saving in computational effort. Such conclusions are 
general; how they apply in detail in the cases of the higher polynomials and hence 
how they may be expected to apply to functions of general interest may be better 
understood from the results contained in Table 2. The polynomials are just those 
which were chosen for detailed examination in Table 1. 

It is clear from an examination of Table 2 that geometric series extrapolation 
is effective in hastening convergence, even for coupled series which exhibit appreci- 
able deviation from the bilinear form. Further, when compared with Table 1, 
it is not surprising to find that damping which speeds the rate of convergence upon 
cycling likewise improves the precision with which the extrapolated values from 
the first three iterations approximate the conventionally obtained convergent 
results. This is also reflected in the other Table 2 entries, i.e., the earliest cycle 
from which extrapolation yields the converged value within 10 -6 . 
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Table 2. Geometric extrapolation effects on coupled polynomial equations a,u 

q 
~x S = - 0.2 S' = 0.005 S" = - 0.0002 

co = 5.0 0.150000 0.325291 0.370146 
0.150000,1 0 .358103 ,1  0.515056,1 
0.150000,1 0.329161, 54 0.391618,1 
0.150000,1 0.325106,4 0.369726, 5 
0.150000,1 0.325291,1 0.370141,2 

o9' = - 3.0 0.157436 0.374787 0.442876 
0.160517,20 0.389613,18 0.450396,15 
0.157894, 5 0.375590, 5 0.442892, 2 
O. 157437,1 0.374856, 2 0.442662, 2 
0.157247,3 0.369384,4 0.424370,5 

co" = 2.0 0.156588 0.359982 0.416580 
0.159175,23 0 .389256 ,1  0.450380,1 
0.157024, 5 0.367787,10 0.437561,15 
0.156591,2 0.360273,3 0.418077,4 
0.156492,3 0.359928,2 0.416580,1 

145 

" Entries are within each column block, the converged value of q, and, for the series damped with 
D values 1.0, 0.8, 0.6 and 0.4 respectively, the q-value obtained by extrapolation with ql, qz and qa, 
followed by the smallest value of t from which extrapolation employing qt, qt + 1 and q~ + z approximates 
q~ to the 6 place accuracy shown. For divergent progressions, the back-extrapolated value, using ql, 
qz and qa which is generally the best possible combination,  is indicated by italics. 

b Footnotes b, c, and d of Table 1 pertain. 

Interestingly, extrapolation in the damped series which are monotonically 
convergent is not generally more precise than in the differently damped series 
(with the same polynomials) which oscillate in progress to convergence. In 
Table 1, the monotonic series generally converged more rapidly. 

Back extrapolation, most effective when applied to the earlier cycle results, 
before very wide swings are encountered, is generally able to approximate the self- 
consistent value of a series as well as conventional cycling in convergent series 
can within the first 20 % of the total cycles required. Recycling from these back- 
extrapolated points often results in convergent series. Occasionally, however, 
more than one back extrapolation may be required before this outcome is achieved. 

Conclusions 

It is apparent from the foregoing analysis that damping procedures may be 
extremely useful in hastening the rate of convergence or preventing divergence in 
self-consistency cycling procedures, but care must be exercised to avoid having 
the damping affect the final or convergent result. The procedure suggested by 
Hartree is apparently sound in both these regards. Coupled polynomial equations 
of any order are shown analytically not to exhibit functional dependence of their 
convergent results upon damping in this procedure. In fact, if damping effects 
are ever to be noted with this method, these could only arise in the multi-variable 
cases because of cross-terms between or among these variables. Extension of the 
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analysis reveals that geometric series extrapolation methods simulate the behaviour 
of coupled equations in terms of the behaviour of the simplest coupled system, 
the bilinear equation system. How well the approximation does is of course 
dependent on the polynomial system; tests reveal its general utility in speeding 
convergence and for that matter in reversing trends toward divergence. Damping 
procedures when coupled with extrapolation techniques are shown to be especially 
effective in decreasing the computational efforts required in self-consistency 
calculations, more effective than either may be alone. 
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